webTV

Lecture

Carlos Adrian Correa Florez, MINES ParisTech PhD, PERSEE center

Lecture

Smart4RES

Lecture

CoRDÉES : gouvernance énergétique de quartier

Lecture

Prédiction solaire pour des suiveurs photovoltaïques

Lecture

The REstable project

+ Toutes les vidéos

contact

Retrouvez nos coordonnées
sur la page
Informations pratiques

Télécharger notre plaquette

Le 23 mai 2019

Soutenance de thèse de Alexis GEROSSIER

Prévision à court terme de la demande électrique des maisons intelligentes et des réseaux de distribution

Soutenance de thèse de Alexis GEROSSIER

Résumé de la thèse en français

Cette thèse s'intéresse à la prévision à court terme de la demande électrique d'une maison intelligente et des réseaux de distribution. Les données mesurées par les compteurs intelligents permettent de caractériser la demande électrique à l'échelle d'une maison et de la comparer à la demande régionale, pour étudier notamment l'effet de foisonnement. Cette analyse permet de développer des modèles de prévision de cette demande. Ces modèles sont de nature statistique et font usage de méthodes d'apprentissage automatique. Un soin particulier est porté à la sélection de variables d'entrée pertinentes. Afin d'être déployés dans un environnement opérationnel, les modèles doivent faire preuve de réplicabilité : fonctionnement autonome, aptitude à s'adapter à de multiple situations, et robustesse face aux données erronées. Plusieurs produits de prévision sont développés et évalués avec plusieurs jeux de données : des prévisions probabilistes à différentes résolutions, et des scénarios journaliers de la demande. Enfin, les habitudes relatives à un usage électrique particulier, à savoir le chargement d'une batterie de véhicule électrique, sont modélisées pour produire des scénarios prédictifs de la demande de cet usage spécifique.

Résumé de la thèse en anglais

This thesis is devoted to the short-term forecasting of electricity demand of smart homes and distribution grids. The household demand data provided by smart meters is analyzed to characterize the electricity demand at the local scale and compared to this at the regional scale, so as to examine the aggregation effect. This thorough analysis enables the designing of models that forecast the future demand. The models make use of advanced statistical tools and machine-learning techniques. The inputs are selected with special care for their relevancy to the household demand. To be deployed in an operational environment, the models must be replicable: low to no maintenance, adaptability to various situations, and robustness to the lack of data. Several demand forecasting products are developed and compared to actual datasets: probabilistic forecasts at different temporal and spatial resolutions, and daily demand scenarios. Finally, the habits related to a domestic appliance, namely the charging of an electric vehicle battery, are modeled in order to generate forecasting scenarios of the appliance demand.

Titre anglais : short-term forecasting of electricity demand of smart homes and distribution grids
Date de soutenance : jeudi 23 mai 2019 à 14h00
Adresse de soutenance : 1 Rue Claude Daunesse, 06904 Sophia Antipolis - Amphithéâtre Mozart
Directeur de thèse : Georges KARINIOTAKIS

> plus d'informations sur le site dédié Soutenance de thèse de Alexis GEROSSIER - MINES ParisTech

 

 

- MINES ParisTech
Partager

actualité

Le Rapport d'activité 2019 est en ligne

Formation Le Rapport d'activité 2019 est en ligne MINES ParisTech, établissement-composante de…
> En savoir +

Enquête 1<sup>er</sup> emploi 2020

Formation Enquête 1 er emploi 2020 Toujours 100 % de réponses. L'enquête 1 er emploi du cycle Ingénieurs civils de MINES…
> En savoir +

L’équipe de PERSEE / MINES ParisTech remporte le challenge international de prévision EEM 2020

International L’équipe de PERSEE / MINES ParisTech remporte le… Le Centre PERSEE est fier d’annoncer que…
> En savoir +

8th International DHC+ Student Awards

Formation 8th International DHC+ Student Awards La 8 e cérémonie de remise des prix a eu lieu le 18 juin.…
> En savoir +

Mon doctorat en confinement

Formation Mon doctorat en confinement             des Initiatives pour poursuivre sa thèse pendant le confinement,…
> En savoir +

+ Toutes les actualités

 

 

 

 

Plan du site
efil.fr © 2014 MINES ParisTech